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Abstract 
WATER SOLUBLE POLYMER SOLAR CELLS BASED ON ELECTROSPRAY 

DEPOSITION 
A Dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Mechanical Engineering at Virginia Commonwealth University. 
 

by 
MARSHALL SWEET, M.S. 

 
Virginia Commonwealth University, 2013 

 
Director: James T. McLeskey, Jr., Ph. D. 

Associate Professor, Mechanical Engineering 
 

 This dissertation reports the fabrication and characterization of thin films from the 

water soluble polymer sodium poly[2-(3-thienyl)-ethyloxy-4-butylsulfonate] (PTEBS) by 

electrospray deposition (ESD).  Contiguous thin films were created by adjusting the 

parameters of the electrospray apparatus and solution properties to maintain a steady 

Taylor cone for uniform nanoparticle aerosolization and controlling the particle water 

content to enable coalescence with previously deposited particles.  The majority of 

deposited particles had diameters less than 52 nm.  A thin film of 64.7 nm with a root 

mean square surface roughness of 20.2 nm was achieved after 40 minutes of ESD.   

Hybrid Solar Cells (HSCs) with PTEBS thin films from spin coating and 

electrospray deposition (ESD) were fabricated, tested, and modeled.  A single device 

structure of FTO/TiO2/PTEBS/Au was used to study the effects of ESD of the PTEBS 

layer on device performance.  ESD was found to double the short circuit current density 

(Jsc) by a factor of 2 while decreasing the open circuit voltage (Voc) by half compared to 

spin coated PTEBS films.  Comparable efficiencies of 0.009% were achieved from both 

device construction types.  Current-Voltage curves were modeled using the characteristic 

solar cell equation showed a similar increase in generated photocurrent with a decrease of 
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two orders of magnitude in the saturation current in devices from ESD films.  Increases in 

Jsc are attributed to increased interfacial contact area between the TiO2 and PTEBS 

layers, while decreases in Voc are from poor film quality from ESD. 

Polymer solar cells (PSCs) with water-soluble active layers deposited by ESD 

were fabricated and tested.  The water soluble, bulk heterojunction active layers consisted 

of PTEBS and the fullerene C60 pyrrolidine tris-acid.  A single device structure of 

ITO/PEDOT:PSS/bulk(PTEBS+C60)/Al was used to study the effect of PTEBS to C60 

tris-acid ratio on photovoltaic performance.  An active layer ratio of PTEBS:C60 tris-acid 

(1:2) achieved the highest power conversion efficiency (0.0022%), fill factor (0.25), and 

open circuit voltage (0.56 V).  The percolation threshold of C60 was achieved between 1 

part PTEBS and 2 to 3 parts C60.  Increasing the C60 tris-acid ratio (1:3) improved short 

circuit current, but reduced the open circuit voltage enough to lower efficiency. 



www.manaraa.com



www.manaraa.com

 

 

1 

 
1. INTRODUCTION 

 
1.1 Introduction and Motivation 

 The International Energy Agency has reported that in the year of 2010, 80% of the 

world’s electricity was from non-renewable sources (67.1% from the combustion of fossil 

fuels and 12.9% from nuclear energy) [1].  Each of these non-renewable sources 

negatively impacts the environment in ways such as acid rain, radioactive waste, mining 

destruction, and the generation of greenhouse gases.  Not only do these non-renewable 

sources inflict harm upon the environment, but they are also limited in supply.  Petroleum 

oil makes up 34.4% of the total energy supply, mainly in the production of gasoline, so it 

has been the most studied energy source for predicting the longevity of its existence.  In 

1956, M. King Hubbert predicted the peak of oil production to occur between 1965 and 

1970 [2].  Since Hubbert’s prediction, many other models have been developed every few 

years delaying the year of peak oil production based on improved mining technology.  

However, all predictions agree that there will be a peak in production, followed by a 

period of decline, and this goes for all non-renewable sources.  It is imperative that 

alternative clean energy sources be investigated. 

 The sun is a 1.39 x 106 km sphere of gaseous matter with an average surface 

temperature of 5762 K and sends between 1300 – 1400 W/m2 (at ground level this 

number decreases to 1000 – 1120 W/m2) of energy to the Earth’s atmosphere [3].  Not 

only does the sun provide the Earth with an abundance of energy, the sun is also expected 

to “rise” every day for a very long time (also known as renewable energy).  The U.S. 

Department of Energy has suggested that covering 0.16% of the Earth’s surface with 10% 

efficient solar cells would provide approximately 2 x 1013 W of electricity, which is more 
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than the current energy demand of the whole planet [4].  The need to research and 

develop inexpensive methods of harvesting the sunlight for conversion to electricity is the 

stimulating force of scientific research for efficient, low cost solar cell devices.  Polymer 

solar cells (PSCs) have emerged as the front runner because of their potential for cheap 

and easy fabrication of devices [5].     

Polymer Solar Cells have gained considerable attention in recent years due to 

their low cost, ease of fabrication, thin film applications, and material safety.  PSCs 

generally refers to solar cells that consist of an organic polymer electron donor and a 

fullerene (C60) or an inorganic material (TiO2, ZnO, CdSe, etc.) as the electron acceptor.  

PSC efficiencies are low (maximum 11.1%) compared to the efficiencies of common 

silicon based photovoltaics, 16 to 25% [6,7].  Nonetheless, the high cost of materials and 

energy required to make silicon solar cells are making PSCs a popular area of interest.  

PSC fabrication is often done by printing or coating at room temperature from solution.  

Thermal evaporation of materials for PSCs is also done at considerably lower 

temperatures than the high temperature processing steps required by silicon photovoltaics 

(exceeding 1000°C) [8].   

 Efficiencies of PSC devices are expected to continue to increase whereas the 

efficiencies of silicon devices have approached their theoretical limits over the last 20 

years.  Figure 1 shows the efficiency trends of different types of photovoltaic devices 

since 1976.  The blue lines indicate silicon based solar cells, which are nearly straight 

lines, indicating minimal improvement upon efficiency.  The maximum silicon PV 

efficiencies to date is 27.6% which is close to the Shockley and Queisser maximum 

theoretical efficiency limit of p-n junction silicon solar cells of 30% [9].  The red line in 
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the bottom right corner of Figure 1 shows the increasing trend line of OPV efficiencies.  

The highest PSC efficiencies to date are between 8.3 and 9.2% [7], which is nearly 

double the maximum efficiency obtained in 2005 [6].  The current research goal for PSC 

device efficiency is to exceed 10% because this is where their low cost offsets their lower 

efficiencies and lifetimes (5-10 years) to make them a more economical choice over 

common silicon PV devices.  Currently, the cost to fabricate and install silicon solar cells 

is $2-3/Watt for silicon solar cells and $1.00-2.83/Watt for PSCs [10,11].  Currently the 

cost of electricity in the US is about $0.07 – 0.13/kWh [12].  The levelized cost of 

electricity (LEC) for a silicon solar cell is between $0.25 – 0.65/kWh [13].  Assuming a 

PSC with 5% efficiency and a 5 year lifetime would have a LEC between $0.49 - 

$0.85/kWh.  In order to achieve a LEC of $0.07/kWh, PSCs would need to have 15% 

efficiency and a lifetime between 15 – 20 years [11]. 

 
Figure 1. Solar cell efficiencies to present day.  Blue trends indicate common silicon 

based solar cells.  OPV are indicated by the red trend line in the bottom right corner [14]. 
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1.2 Objectives 

The efficiency of PSCs is intimately linked to the processing conditions during 

device fabrication, and commercialization of PSCs will ultimately depend on successful 

large scale fabrication.  Traditional laboratory PSC devices are commonly prepared by a 

two step solution process where two different layers are spin cast.  The first layer being a 

dispersion of PEDOT:PSS in water, and the second being a bulk heterojunction active 

layer dissolved in an organic solvent.  However, spin casting is a low throughput and high 

waste process since much of the polymer is lost due to the non-recyclable polymer 

displaced from the high rotational speeds.  A second problem with the traditional 

laboratory fabrication method is the inability for consecutive layering from common 

solvents.  In order to add multiple layers of polymer, another solvent orthogonal to the 

previous layer would be needed.  This hinders simple/cheap solution based processes in 

favor of expensive evaporation deposition methods. 

Electrospray deposition (ESD) is a method of depositing thin films which can 

overcome the problems associated with spin coating.  Firstly, ESD is favorable to 

commercialization since it is cheap, efficient (minimal waste), and has a high throughput.  

Secondly, it overcomes the solubility issue between two adjacent layers.  ESD generates 

atomized particles which are nearly dry upon deposition so that it doesn’t affect the 

previous layer.   

 Another major issue facing the commercialization of PSCs is the sensitivity of the 

polymers to atmospheric conditions.  Popular conjugated semiconducting polymers used 

in traditional laboratory fabrication are soluble in organic solvents and are known for 

oxygen degradation which adversely effects PSC lifetimes [15].  Traditional laboratory 
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fabrication is often carried out in inert nitrogen filled glove boxes.  Once the final 

electrode is deposited, the PSCs can be sealed.  By using water soluble polymers, oxygen 

sensitivity is assumed to be avoided since water contains oxygen.  Being able to work in 

atmospheric conditions would significantly reduce ease and cost of commercializing 

PSCs.  PSC devices fabricated through water soluble approaches are also more favorable  

since organic solvent exposure include toxicity to the nervous system, reproductive 

damage, liver and kidney damage, respiratory impairment, cancer, and dermatitis [16]. 

 The objective of this work is to investigate the application of ESD of water 

soluble polymer (specifically PTEBS) thin films in the fabrication of PSCs.  Using a 

water soluble polymer enables us to stay true to the mission of producing 

environmentally friendly alternative energy.  Water solubility combined with ESD 

enables fabrication of PSCs under atmospheric conditions with high throughput, which is 

more favorable to commercialization.  ESD will enable deposition of two consecutive 

water soluble layers such as PEDOT:PSS and a bulk heterojunction layer of the water 

soluble polymer and a water soluble fullerene derivative.  Fabrication of hybrid solar 

cells with inorganic electron acceptors (ZnO nanorods and TiO2 inner penetrating 

nanostructure) will also be investigated to compare device performances from traditional 

spin casting methods to ESD.  The different geometries of the inorganic semiconductors 

will provide insight to the limits of the ESD method for creating thin films on different 

surfaces. 

1.3 Outline 

 Chapter 2 presents a background and literature review of PSCs.  A brief history is 

presented before device concepts/operation and architecture are explained.  Basic 
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characterization methods of solar cells are then discussed.  A brief history of water 

soluble polymer solar cells focusing on the PTEBS is also presented. 

 Chapter 3 is dedicated to the electrospray technology.  A brief history and 

introduction to electrospray is presented, followed by a detailed discussion of ESD 

operation and formation of electrospray jet and droplets.  ESD and its application to 

PSCs, including the two previously reported instances of PSCs from ESD, will be 

presented at the end of the chapter. 

 Chapter 4 gives a brief overview of the chief materials used in the PSCs’ active 

layers fabricated in this work.  The only polymer electron donor used was the water 

soluble polymer PTEBS.  The organic electron acceptor, water soluble C60 pyrridoline 

tris-acid, was used in combination with PTEBS to create bulk heterojunction polymer 

solar cells (PSCs) with a fully water soluble active layer.  Inter-penetrating layers of TiO2 

were used as the electron acceptor in the fabrication of hybrid solar cells (HSCs). 

 Chapter 5 is dedicated to the characterization of PTEBS thin films from 

electrospray deposition (ESD).  The multiple parameters involved and their effect on the 

ESD of PTEBS thin films are analyzed for suitable film morphology.  Substrates are 

analyzed by atomic force microscopy (AFM) after different durations of ESD to 

understand the film formation process. 

 Chapter 6 focuses on the comparison of TiO2 Hybrid Solar Cell (HSC) devices 

with electrostatically sprayed PTEBS layers versus devices with traditional spin coated 

PTEBS films.  The characteristic solar cell equation is then modeled to gain insight to the 

variations of device parameters between the two device constructions. 
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Chapter 7 discusses the fabrication of PSCs with fully water soluble active layers 

by ESD.  The ratio of C60 pyrridoline tris-acid to PTEBS is optimized for maximum 

efficiency.   

Chapter 8 is a summary of conclusions from the results discussed in the preceding 

chapters. 
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2. POLYMER SOLAR CELLS 
 

Polymer Solar Cell (PSC) devices are diodes that generate a photocurrent when 

light is incident upon their active layer. The active layer consists two sub-layers: a 

conjugated polymer layer(s) and a second layer of organic and/or inorganic material.  The 

conjugated polymer (electron donor) is responsible for absorbing light and donating an 

electron to the organic/inorganic material (electron acceptor), which then transfers 

electrons to the anode. The polymer donors are typically polythiophenes or poly(p-

phenylene vinylene) derivatives that behave like semiconductors but are of a plastic 

material. The polymer molecular structures have overlapping pi-bonds allowing electrons 

and holes to move between energy levels upon excitation.  Photoelectric manipulation of 

electrons and holes in these uniquely structured polymers is the basis of PSCs [17].  The 

electron acceptor layer is often comprised of nanoparticles or other polymers.  Common 

organic electron acceptor materials include carbon nanotubes, Buckminster fullerenes, 

phthalocyanine, perylene, and their derivatives [5]. Common inorganic acceptors include 

TiO2, ZnO, Si, CdSe, PbSe, and PbS [18].  PSCs that contain inorganic acceptors are also 

known as hybrid solar cells. 

2.1 History 

 The first silicon solar cell was fabricated in 1954 by Bell Labs from crystalline 

silicon with an efficiency of 6% [19].  Commercially available crystalline silicon solar 

cell efficiency has since in been improved to 25% [20], and currently account for 95% of 

the total solar cell market [21].  Amorphous silicon solar cells were invented in 1974 at 

RCA Laboratories as a thin alternative to crystalline silicon [22].  Amorphous silicon 

solar cells are made by evaporating silicon to produce amorphous thin films requiring less 
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material and a lower cost of production [23].  Amorphous silicon solar cells have lower 

efficiencies than crystalline (less than 15%) due to high defect densities from evaporation 

processing [24].  However, the thin film approach used in amorphous silicon fabrication 

has allowed further development of solar cells from silicon and a variety of other 

materials such as gallium arsenide, cadmium telluride, dyes, and polymers [14]. 

 Polymer solar cells consisting of an organic semiconductor layer sandwiched 

between two metals were first reported in the late 1960s and early 1970s [25].  The 

organic semiconductor initially used by Ghosh et al. was tetracene.  In 1977, Shirakawa 

et al. introduced doped polyacetylene as a new class of conducting polymers in which the 

electrical conductivity can be systematically and continuously varied over a range of 

eleven orders of magnitude [26].  Since then, electronic devices such as organic light 

emitting diodes (OLEDS) and polymer solar cells have been the focus of extensive 

research.   

 A breakthrough in PSC research occurred in the mid 1980s with the introduction 

of a two component active layer [27,28].  Polymer solar cells we fabricated with two 

materials working in alliance: a light absorbing polymer donating electrons to an organic 

or inorganic electron acceptor.  This was the first time PSC efficiencies surpassed 1%.  In 

1992, a second major breakthrough occurred when Sariciftci et al. created a PSC using 

the polymer MEH-PPV and buckminsterfullerene (C60) as the electron acceptor [29].  The 

introduction of the two part active layer and the use of C60 as the electron acceptor have 

been the most influential factors in PSC research to date.  P3HT has widely been 

considered the best commercially available conjugated polymer for PSCs since they 
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produce the highest average efficiency (5%) of all devices reported in the year of 2010 

[30]. 

2.2 Device Concepts and Architecture 

The most common PSC device structures currently being researched are the bi-

layer and the bulk heterojunction (BHJ) structures as shown in Figure 2. Both structures 

are typically built on top of a glass substrate covered with a transparent conducting oxide 

(TCO) that acts as the anode. Indium or fluorine doped tin oxide are the most common 

TCO’s.  On top of the TCO is a hole-conducting polymer layer of (PEDOT:PSS) that 

prevents short circuits. The next layer is the active layer where light absorption and the 

photocurrent generation occur. On top of the active layer is a metal cathode (Al, Au, Ni, 

etc.). A bi-layer structured device has two distinct layers where the active layer is 

comprised of an electron donor and an electron acceptor layer.  In a BHJ structure, the 

active layer is a blend of the both the electron donor and acceptor [8]. 

 
Figure 2.  Typical polymer solar cell structures: (a) Bi-layer, ( b) Bulk heterojunction [8]. 
 

The PSC devices generate a photocurrent due to the engineered structure of the 

polymer layers’ energy band-gaps and the electrodes’ work functions.  Light passes 

through the TCO and PEDOT layer and is absorbed in the active layer by the 
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semiconducting polymer electron donor as seen in Figure 3. The absorption range is 

generally fairly narrow, between 450-600 nm (2.0-1.9 eV), and differs amongst 

individual polymers.  The electron donor absorbs light in a narrow wavelength region 

which varies depending on the polymer’s band gap.  The band gap is determined by the 

energy difference between the highest occupied molecular orbit (HOMO) and the lowest 

unoccupied molecular orbit (LUMO) of electrons.  The polymer’s HOMO and LUMO 

levels are caused by the ability of electrons to jump from overlapping pi-bond clouds in 

the polymer chains [17]. 

 
Figure 3.  Flow of electrons in polymer solar cell [8]. 

 
The donor absorbs light and an electron-hole pair, or exciton, is generated.  When 

the exciton reaches an interface between the polymer donor and the electron acceptor, the 

electron is excited to the LUMO and the hole maintains the displaced electron’s position 

in the polymer’s band gap. The excited electrons diffuse to the acceptor interface and lose 

energy when they fall into the electron acceptor’s LUMO level. The electron is then 

transported from the acceptor’s LUMO level to the cathode. The cathode’s work function 

needs to be less than the donor’s LUMO but greater than the donor’s HOMO. Once the 
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electron goes to the cathode, the hole on the donor’s HOMO travels to the anode and 

completes the electrical circuit. 

The exciton generated after absorption by the polymer has a very limited diffusion 

range, 3-10 nm in typical polymer donors, to meet a donor/acceptor interface before it 

loses energy and the electron returns to the polymer donor’s HOMO [31].  The minimum 

film thickness for effective optical absorption of sunlight is 50-250 nm.  Efficient solar 

cells require excitons to be generated within a nano scale interpenetrating bi-continuous 

network of electron donor and acceptor materials through the active layer [32]. 

P3HT with a thickness of 240 nm is still only able to absorb 21 % of the sun’s 

incident photons.  Active layer thicknesses above 150 nm result in high recombination 

rates due to the polymer’s low carrier mobility [33].  Another major obstacle these 

conjugated polymers present to PSC is that their band gap is too large and the absorption 

bandwidth of these materials is too narrow to absorb a large fraction of useful energy of 

the solar spectrum.  Developing new polymers with lower band gaps and wider 

absorption ranges is an increasing area of research in OPV [34]. 

Hybrid PSCs consist of a polymer electron donor and an inorganic semiconductor 

which assumes the electron acceptor role.  Hybrid PSCs take advantage of inorganic 

semiconductor’s high electron mobility [35,36].  Engineering the interface structure 

between the electron donor and acceptor can also improve hybrid PSC cell performance 

by lowering recombination rates and electron flight distances. Inorganic nanoparticles 

and/or nanostructures are used as the electron acceptor in hybrid solar cells.  These 

nanoparticles (TiO2 NR or nanoribbons) and nanostructures (ZnO nanorods) increase the 

interfacial surface area as shown by Lin et al. in Figure 4.  



www.manaraa.com

 

 

13 

 
Figure 4.  Advanced design structures increase the interfacial surface area between the 

electron donor and acceptor [37]. 
 

Other advanced design structures for increasing the interfacial surface area via 

nanolithography are also being researched.  Electron donor/acceptor layers are being 

nano-imprinted so that the polymer layers mimic the design of nanorods. However, nano-

imprinting and lithography methods have less resolution than self assembled methods 

which are more difficult to control [38].  Another advanced design is to include two OPV 

devices connected in parallel.  Each device has a different polymer with differing 

absorption spectra that complement each other (Figure 5).  By angling the two devices 

with a reflective back electrode, a wider spectrum of light can be absorbed [39]. 

 
Figure 5. Folded reflective tandem polymer solar cell increases total light absorption 

which leads to increased photocurrents [39]. 
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2.3 Characterization 

 The primary characteristic of a solar cell is the efficiency (η).  The efficiency is a 

measure of how well a device performs based on the ratio of electrical power output 

divided by the power of incident light.  The power output of a solar cell is measured and 

characterized by analyzing the relationship between its current density and voltage known 

as the J-V curve.  The J-V curve will appear as a diode if measured in the dark, and will 

shift into the 4th quadrant, as show in Figure 6, when measured in the light since a 

photocurrent will be generated.   

 
Figure 6.  Typical J-V curve of a solar cell under illumination. 

 
The J-V curve of a solar cell crosses the current axis (y-axis) under short circuit 

conditions (Jsc), and crosses the voltage axis (x-axis) under open circuit conditions (Voc).  

The dark shaded region inside of the J-V curve in Figure 6 depicts the largest square that 

can be formed inside of the curve.  The asymptotes signify the current and voltage 

conditions where the maximum power is obtained.  The maximum power, open circuit 

voltage, and short circuit current are all interrelated parameters that are used to compute 

the power output, efficiency, and other characteristics of a solar cell. 
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 The open circuit voltage (Voc) is the built-in electrical potential between the two 

electrodes of a solar cell when there is no external load and light is present.  Voc is the 

maximum voltage sustained by the device, and is measured when the load is connected to 

infinite resistance.  The built in electrical potential also causes a drift in the 

photogenerated charges of the device known as the short circuit current (Jsc).  Jsc is the 

measure of the maximum current sustained by the device, and is measured when the load 

has zero resistance.   

 The ratio between the maximum electrical power, and the theoretical maximum of 

electrical power estimated from the product of the Jsc and Voc is called the fill factor (FF): 

𝐹𝐹 =
𝑃𝑚𝑎𝑥

𝑃𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
=
𝐽𝑚𝑝𝑉𝑚𝑝
𝐽𝑠𝑐𝑉𝑜𝑐

 

The Jmp and Vmp are the current density and voltage of where maximum electrical power 

output is obtained.  Fill factor is a measure of quality of the device, and it can also be 

viewed as the ratio between the dark and light shaded boxes in Figure 6.  Devices with 

higher fill factors are able to extract more electrical power from a more constant current 

over a higher voltage. 

 Solar cell efficiency is a measure of how effectively a device converts sunlight 

into electrical energy by comparing the total power input from the sun to the total power 

output from the device.  The efficiency (η) is given by the following equation: 

𝜂 =
𝐽𝑚𝑝𝑉𝑚𝑝
𝑃𝑙𝑖𝑔ℎ𝑡

=
𝐹𝐹𝐽𝑠𝑐𝑉𝑜𝑐
𝑃𝑙𝑖𝑔ℎ𝑡

 

2.4 Water Soluble Polymer Solar Cells  

 Recently, more and more attention has been paid to the fabrication of PSC 

through aqueous approaches considering the green chemistry concept.  Typical laboratory 
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solution processing uses organic solvents (chloroform, chlorobenzene, toluene, xylene, 

hexane, etc.) to dissolve the conjugated polymer.  Water is a more favorable solvent since 

exposure to organic solvents can result in toxicity to the nervous system, reproductive 

damage, liver and kidney damage, respiratory impairment, cancer, and dermatitis [16].  

Water soluble polymers are also less susceptible to oxygen degradation which adversely 

affects PSC lifetimes since water contains oxygen [15]. 

 The first water soluble PSC was reported in 2005 by Qiao and McLeskey using 

the water soluble polythiophene PTEBS.  The bilayer PSC device structure of 

FTO/TiO2/PTEBS/Au had an efficiency of 0.13% [40].  Subsequently, they improved 

device efficiency to 0.17% by adding a TiO2 buffer layer (FTO/TiO2/(TiO2+PTEBS)/Au).  

The buffer layer improved the interfacial contact which increased the shunt resistance 

[41]. 

 The highest PSC device from the water soluble polymer PTEBS reported is 0.43% 

by Yang, Garcia, and Nguyen.  The bilayer device structure they used was 

ITO/PTEBS/C60/BCP/Al where the C60 was the electron acceptor and the BCP functioned 

as an exciton blocking layer. Their device used thermal evaporation to deposit the layer 

of C60, however it is the highest efficiency achieved using PTEBS [42].   

 The highest efficiency of any PSC device fabricated from a water soluble polymer 

was 2.14% by Yang et al.  A water soluble poly(phenylene vinylene) (PPV) was as the 

polymer electron donor and cadmium telluride (CdTe) was the electron acceptor as well 

as zinc oxide (ZnO).  The device configuration was 

ITO/PEDOT:PSS/(PPV+CdTe)/ZnO/Al.  However, the fabrication methods used didn’t 

stay true to the clean chemistry approach since organic solvents were used to fabricate the 



www.manaraa.com

 

 

17 

cadmium telluride nanocrystals.  Fabrication was also carried out in nitrogen and not in 

open air.  The high efficiency is linked to the large absorption spectrum of the CdTe [43]. 

 A PSC has also been fabricated from exclusively using aqueous approaches by 

Sondergaard et al.  They synthesized their own polymer by creating poly-3-

carboxydithiophene (P3CT) and then decarboxylating it at high temperatures to form a 

basic polythiophene.  They also created monodisperse clusters of C60 from PCBM in 

water through forced precipitation by addition of a THF solution in water.  While neither 

part of the active layer was water soluble, they were both capable of being suspended in 

water and deposited into thin films via spin casting.  A water based silver paste was then 

screen printed for the top electrode.  Device efficiencies were only 0.7%, but this was a 

critical first step towards creating PSCs in an environmentally friendly method with water 

as the only processing solvent [44]. 
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3. ELECROSPRAY TECHNOLOGY 

The term electrospray, or electrospraying, is used when electrical forces are used 

for liquid nebulization. A high electrical potential is applied to a liquid supplied through a 

metallic capillary tube to disperse a liquid into fine droplets.  The liquid at the tip of the 

capillary forms a Taylor cone, through which the liquid breaks apart into droplets at the 

apex.  The droplets formed are highly charged to approximately half of the Rayleigh limit 

and continue to repel from each other until deposition due to their like charges.  The 

droplets may be on the order of 10’s of nanometers and can ideally be controlled to an 

extent by controlling the electric potential.  This chapter will focus on the use of 

electrospray deposition to create uniform thin films, with a particular focus on its 

application to solar cell fabrication [45]. 

3.1 History and Introduction to Electrospray 

 During the late 16th century William Gilbert was the first to observe and report 

that a drop of water deformed into a cone when in the presence of a charged piece of 

amber.  He did not document any observations related to liquid nebulization and likely 

did not know cone deformity was related to electrospraying [46].   

 The first widely known observation of liquid being electrosprayed was in the 18th 

century by Abbe Nollet.  Nollet was researching the art of healing via electricity.  He 

constructed a high voltage generator and connected human subjects to it for 15-45 

minutes.  He discovered that a person who was highly electrified would not bleed 

normally if he were to cut himself.  Instead of blood dripping from the wound, it would 

spray.  He then connected vessels of blood to the system and achieved the same spraying 

phenomenon [47].  It is unknown if he experimented with any other liquids. 
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In 1882 Lord Rayleigh published the first theoretical work on electrospray 

nebulization.  He stated that the magnitude of charge on a droplet that produces an 

electrostatic force greater than the surface tension force of the liquid, would lead to the 

formation of a jet and eventually droplet nebulization.  This charge is known as the 

Rayleigh limit, which was experimentally proven over 100 years later [48,49].  

Sir Geoffrey Taylor wrote the first blueprint for an electrospraying device in 

1964.  Taylor was able to show that a drop of water became elongated when in the 

presence of an electric field, and that tiny jets of water extended from the droplets.  As 

the electric field increased beyond a critical electric field the elongated drop becomes 

unstable.  Through experiments he noticed that when the length of the drop is 1.9 times 

its equatorial diameter, it lost stability.  He was able to calculate the critical electric field 

based on Rayleigh’s principle of balancing electrical and viscous forces.  He then built an 

apparatus in his lab to show that his calculations agreed with experimental data to within 

1% [50].  The elongated drops formed under the presence of an electric field are now 

formally known as Taylor Cones.  

John Fenn led the technology into the modern era by developing Electrospray 

Mass Spectrometry (ESMS).  ESMS is a widely used technique across many disciplines 

of research namely medicine and biology.  Its principles rely on electrospraying a fluid 

into molecules and being able to identify the molecules of said fluid by measuring them 

with mass spectrometry [51].  This application was a tremendous breakthrough in the 

biomedical fields and renewed interest into electrospray technology. 

Research in electrospray technology increased during the late 20th century after 

further developments improved typically low throughputs.  Low throughput was the 
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major limiting factor in its widespread use in industry which is overcome by multi-nozzle 

systems [52,53], linear-slit nozzle systems [54], mechanical spraying by rotary [55], and 

pneumatic atomizers with grounded capillary and a high voltage induction electrode 

[45,56]. 

 Adjusting the liquid flow rate and the electric voltage can largely control the size 

and charge of atomized droplets.  Controlling external field(s) can also control the motion 

of the atomized droplets to focus/disperse.  Deposition of a charged spray or solid 

particles onto grounded, or oppositely charged, surfaces can be more efficient than 

deposition of uncharged particles.  Consequently, this makes electrospray nebulization an 

ideal deposition method for uniform thin films (less than 100 um).  Apparatuses for 

supplying high electrical potential (1kV – 30kV) and pumps are relatively simple and 

cheap [45].  Electrospray technology can be used to create thin films from coating-

material solution or colloidal suspensions.  The droplets can also undergo chemical 

reactions during their flight to the substrate.  Morphology of the thin film can be affected 

by a number of parameters such as deposition rate, temperature, humidity or anything that 

affects the solvent evaporation rate during droplet flight to deposition. 

Electrospray nebulization has several advantages over conventional mechanical 

atomizers: 

1. Droplet size is small (can be in the nanometer range) 

2. Standard deviation of droplet size is typically small and contributes to more 

uniform layers 

3. Charged droplets are self-dispersing due to their electrical repulsion and this 

minimizes coagulation 
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4. The flow of charged droplets can be focused/dispersed using electric field 

gradients 

5. Deposition efficiency of a charged spray is orders of magnitude higher than for 

un-charged droplets, leading to lower fabrication costs 

There are a wide variety of applications that involve the spraying of liquids, but the 

question remains the same, “Why may it be advantageous to charge the spray drops?”  

The answer is almost always the same: to distribute the liquid in a controlled and 

predetermined way.  By introducing charged droplets and/or an electric field to the spray 

zone, trajectories of the drops and the deposition structure can be controlled in ways that 

are not possible without applied electrostatic forces. 

3.2 Operation 

 A typical electrospray deposition set up (Figure 7)has three essential components: 

a fluid source pump, a high voltage supply, and a metal deposition plate.  The fluid 

source pump is typically a syringe pump holding a syringe with a metal needle.  The 

volumetric flow rate is typically in the range of 0.1 to 10 ml/h [45].  The metal needle is 

typically connected to the high voltage supply (theoretically the needle can be positive or 

negative biased, or grounded, as long as an electric field exists between the needle and 

the deposition plate) and the deposition plate is grounded. Voltages are typically greater 

than 1kV but rarely exceed 20 kV.  When the voltage is too high, the air begins to 

conduct current between the capillary and the ground plate, and oxygen in the air is broke 

down to form ozone. 
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Figure 7.  Electrospray deposition for thin films [57]. 

The electrical charge needed to overcome the surface tension forces in a droplet is known 

as the Rayleigh Limit given by the following equation: 

 

q = 2π(16σ lε 0r
3)1/ 2           (3.1) 

where σl is the liquid surface tension, ε0 is the electric permittivity of the free space, and r 

is the droplet radius [48].  As the electrical charge is increased beyond the Rayleigh 

Limit, the mode of spraying changes from dripping to multi-jet mode. 
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Figure 8.  Main modes of electrospraying [57]. 

The needle tip can be of any diameter and shape.  Blunt tipped capillaries provide 

the most uniform and smooth thin films [58].  Beveled tips (hypodermic needles) and 

saw-tooth nozzles allow the Taylor Cone-jet to operate over a wider voltage and flow rate 

range, leading to great cone stability [58,59].   

 
Figure 9.  Typical electrospray capillaries: a) beveled (hypodermic), b) saw-toothed, c) 

blunt tipped capillary in multi-jet mode [58]. 
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Standard capillary/substrate setups (Figure 10a) are often modified in order to 

improve the deposition properties of the electrosprayed film.  The largest disadvantage of 

the capillary/substrate setup is that the substrate serves as an active electrode and needs to 

be conductive in order to remove charges gained from charged droplets.  In order to 

reduce electrical charge buildup on the substrate additional electrodes of circular 

symmetry (Figure 10b) are used in-between the capillary and the substrate.  These 

circular electrodes are either maintained the same potential as the capillary, grounded, or 

held at intermediate potentials in order to create convergent electric field lines.  These 

electrodes can also focus the spray to a smaller area, or to create deposition patterns 

[45,57,60]. 

 

Figure 10.  Various configurations of electrospray systems with circular electrodes [45]. 

 Systems with down facing spray capillaries can use either a pump or gravity to 

induce a flow rate through the nozzle.  The major disadvantage to this set up is that 

gravity can tend to pull large droplets onto the substrate without undergoing electrical 

nebulization.  Reverse configured set ups utilize an upward facing nozzle, and horizontal 

facing capillaries have been used in thin film deposition set-ups [61,62].  In these set-ups 
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gravity pulls larger droplets to the ground while fully atomized droplets are accelerated 

by the electric field to the deposition substrate.   

3.2.1 Formation of Electrospray Jet and Droplets 

Electric potential applied to a liquid filled conductive capillary causes the liquid 

to deform based on a balance of bulk forces (equation 3.2) and normal and tangential 

surface tension forces (equation 3.3) on the liquid.  This leads to the elongation of the 

liquid meniscus at the tip of the capillary (Taylor Cone) to the formation of a jet, which 

later breaks into droplets (Figure 11).   

 

Figure 11.  Force balance schematic of a liquid being electrosprayed in cone-jet [57]. 

Equation 3.2 describes the balance of bulk forces per unit volume on the liquid [63]: 






 Π+Π+Π•∇−Φ−++= ∆ ρηρ∂

∂ρ 

pdlg
ll LLL

t
v

 (3.2) 
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While equation 3.3 describes the stress balance onto the surface of the liquid [63]: 

lp Λ+Π+Π+Π=Ξ×∇ ∆


ρη     (3.3) 

Where ρl is the density of the liquid and vl is the velocity of the liquid jet, and Ξ is the 

surface tension tensor of the liquid that opposes the tensors causing deformation.  

Components Lg, Ll, Lρ, and Φd are forces per volume density, while ΠΔp,  Πη, Πρ, and Λl 

are stress tensors describing deformation of the liquid.  These components are described 

as follows: 

In a continuous medium, the electrodynamic force (Ll) can be represented by the 

volume density of forces on a finite volume of liquid [45]: 

[ ]DEEDEL TT
ql


∇−∇+=

2
1ρ     (3.4) 

Where ρq is the volume charge density, E is the localized electric field, and D is the 

electric flux density.  The electrodynamic force is caused by the electric field (Fe) 

generated from the voltage applied to the capillary, and point charge force (FQ) caused by 

attraction/repulsion from previously emitted droplets.   

Forces from gravity and inertia are also expressed in terms of volume density.  

The gravitational force volume density (Lg) and inertial force volume density (Lρ) are as 

follows [45]: 

gL lg


ρ=        (3.5) 

dt
dv

L l
lρρ =


       (3.6) 

The drag force volume density (Φd) is caused by air resistance on the jet: 
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Where V is the liquid volume, v is the liquid velocity, ρa is the density of air, and Re is 

the Reynolds number. 

 The stress tensors on the liquid surface deform the liquid’s shape and are opposed 

to the surface tension tensor (Ξ) of the liquid.  The stress tensors from equations 3.2 and 

3.3 are defined below: 

 The electrodynamic stress tensor (Λl) is caused from the surface charge density 

and the local electric field: 

[ ])()(
2
11 glgll DDEEEDEq


−−−∗+⊗=Λ   (3.8) 

Where E is the local electric field, D is the electric flux density, and ⊗ denotes the dyadic 

product of two vectors.  The subscript l refers to the liquid and the subscript g refers to 

open space where liquid is not present. 

 The pressure stress tensor (ΠΔp) is caused by the static pressure difference on both 

sides of the interphase surface is defined as: 

( )glp pp −=Π ∆ 1


      (3.9) 

Where pl is the pressure of the liquid and pg is the pressure of the local air. 

 The liquid dynamic viscosity stress tensor (Πη) is proportional to the gradient of 

liquid velocity and perpendicular to the interphase surface. 

ll v


∇=Π ηη        (3.10) 

Where ηl is the liquid viscosity and vl is the liquid velocity. 

 The liquid inertia stress tensor (Πρ) is proportional to the liquid density and is the 

dyadic product of local liquid velocity at the interphase surface. 

lll vv 
⊗=Π ρρ       (3.11) 
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Once the charge accumulated in the Taylor Cone exceeds the surface tension 

forces (the Rayleigh Limit), a small jet is formed at the tip of the Taylor Cone.  The jet 

will then disrupt into two different types of instabilities: varicose or kink, and can be 

continuous or sporadic [64]. 

 Equations 3.2 and 3.3 are theoretical equations balancing electrodynamic and 

surface tension forces on finite liquid volumes and are yet to be solved for the general 

case of cone-jet mode.  The mode of spraying transitions from cone-jet mode to other 

spray modes (Figure 8) as the electric potential applied to the capillary and/or the 

volumetric flow rate of the liquid is adjusted.  Theoretical models of these transitions are 

yet to be analytically explained [45,57].   

 The average size of the droplets emitted from electrospray nebulization in the 

cone-jet mode has been determined from the scaling laws of theoretical analysis [65–69] 

and confirmed by many experimental results [65,70,71].  Equation 3.12 expresses the 

mean droplet size of an electrosprayed droplet: 

 

d = α
QaQε 0

aε ρl
aρ

σ l
aσ γ l

aγ

 

 
 

 

 
 

1
3

      (3.12) 

where α is a constant dependent upon spray conditions and liquid permittivity, Q is the 

liquid flow rate, γl is the liquid conductivity, ε0 is the permittivity of free space, and ε is 

the dielectric constant of the liquid.  The exponents in equation 3.12 vary depending on 

the author, and are stated in Table 1. 

Table 1. Constants for variables in equation 3.12 to determine mean droplet size. 

Authors aQ aε aρ aσ aγ 
Fernandez de la Mora and Loscertales [1994] 1 1 0 0 1 
Ganan-Calvo [1999] and Ganan-Calvo et al. [1997] 3/2 1/2 1/2 1/2 1/2 
Hartman et al. [2000] 3/2 1/2 1/2 1/2 1/2 
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By examining equation 3.12, it can be concluded that the droplet size may be 

decreased by decreasing the liquid flow rate and increasing the liquid’s conductivity or 

surface tension.  Equation 3.12 does not consider capillary diameter, electric potential, or 

liquid viscosity.   

 The droplets’ diameter dependence on the voltage in dripping mode is give by 

equation 3.13 [72]: 

 

d(U) = d0 1−
U

Ucrit

 

 
 

 

 
 

2 

 
  

 

 
  

1
3

     (3.13) 

where d0 is the droplet diameter when U=0, and Ucrit is the onset voltage of cone-jet 

mode.  The onset voltage (Uonset) for the cone-jet mode is described as a balance of the 

electrical forces and the surface tension forces [73]: 

 

Uonset = A
dcσl

ε 0

cosθ
 

 
 

 

 
 

1
2

ln
4d
rc

     (3.14) 

where dc is the inner capillary diameter, d is the droplet diameter, σl is the surface tension 

of the liquid, and θ is the half angle of the Taylor Cone at the capillary outlet.   

 The minimum flow rate required for the cone-jet mode to operate in steady state is 

given by equation 3.15 [74]: 

 

Qmin ≈
σlε 0ε
ρlγ l

       (3.15) 

where γl is the conductivity of the liquid.  If the liquid’s electrical conductivity is 10-3 

S/m then the size of the droplets can be on the order of 1 um.  The size of the droplets 

decreases to about 10 nm when the electrical conductivity is approximately 1 S/m [74]. 
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In this work, the mode of electrospray best suited (determined by our own 

experimentation) for thin film deposition of water soluble polymers occurs near the end 

of cone-jet mode, but before the transition to oscillating-jet mode.  This is marked largely 

by the absence (or near absence) of the ‘jet’ and the Taylor Cone’s apex being the initial 

point of droplet formation.  The droplets immediately begin separating in a spherical 

cloud due to coulombic repulsion from other droplets.  The expansion of a spherical 

cloud of charged droplets is given by equation 3.16 [75]: 

 

−
1
cd

dcd

dt
=

2Ccε0cd E 2
ds

ηρl

=
cd

τ exp

    (3.16) 

where cd is the mass concentration of the droplets, ηg is the gas dynamic viscosity, and Cc 

is the Cunningham slip correction factor.  Eds is the electric field on the surface of a 

single droplet charged to a magnitude of Qd [75]: 

 

Eds =
Qd

4πε 0r
2        (3.17) 

From equation 3.16, τexp is the time constant of expansion of the cloud [75]: 

 

τexp =
ηgρl

2Ccε 0E 2
ds

      (3.18) 

The mass concentration of the cloud decreases reciprocally with time as the cloud 

expands [75]: 

 

cd = cd 0 1−
t

τexp

 

 
  

 

 
        (3.19) 

The spray parameters are of primary importance in the deposition of thin solid 

films.  Furthermore, it should be noted that the deposition of a charged particle on a 

grounded substrate is more effective than for an uncharged particle [45]. 
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 Charged droplets formed from an electrospray system can also undergo fission as 

they travel from the point of formation to the substrate.  The solvent of the droplets 

evaporates as the droplets travel along the axis to the substrate for deposition.  As the 

solvent evaporates from the droplets, the size of the droplets decreases, this increases the 

charge to volume ratio.  When the charge to volume ratio increases to about 90% of the 

Rayleigh Limit the droplet ruptures into two droplets of uneven sizes [49,76]. The initial 

droplets’ diameters are relatively uniform and assumed to be spherical.  Alessandro and 

Tang, showed that as droplets travel along the spray axis, their diameter decreases in a 

uniform fashion until rupture occurs, and then an array of different sized droplets are in 

the spray stream as shown in Figure 12.  Smith et al. measured the average diameter and 

charge (also shown as a percentage of the Rayleigh Limit in Figure 13) of water droplets 

as a function of time.  The sudden decreases in charge indicate when fission occurs due to 

increased charge-to-volume ratio from solvent evaporation. 
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Figure 12.  Size distribution of electrosprayed droplets moving on the order of 2-3 m/s 

along the spray axis: (a) z=7.6 mm (b) z=25.8 mm (c) z=33.6 mm (d) z=43.6 mm.  z-axis 
origin is at the outlet of the capillary [49]. 
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Figure 13.  Evaporation and discharge of electrosprayed water droplets at 43.9°C (110°F) 
in nitrogen buffer gas.  (Top)  Variation of droplet diameter with time.  The smooth line 
represents the predicted evaporation dynamics of a water droplet in vapor-free nitrogen 

gas at 43.9°C.  (Bottom) Variation of droplet charge with time, represented as the number 
of elementary charges and as the percent of the Rayleigh limit of charge for measured 

droplet.  Arrows indicate coulombic particle fission which occur around 90% [76]. 
 

Relative humidity of the air also effects the formation of droplets and their 

deposition.  Excess humidity slows the evaporation process of the droplets, which also 

inhibits fission of particles as they dry.  Not much characterization regarding the effects 

of humidity on the formation of droplets in cone-jet mode has been done.  Through our 

observations, air of higher humidity requires a greater electric voltage to create a Taylor 

Cone.  Regardless of humidity, Taylor Cones of a higher potential are less stable.   

This work utilizes electrospray of liquids for thin film deposition near the end of 

cone-jet mode, but before the transition to oscillating-jet mode.  Operation in this mode 

of electrospraying has been the most successful at achieving uniform thin films with 

steady Taylor Cones.  The end of cone-jet mode is noticeable by the absence (or near 



www.manaraa.com

 

 

34 

absence) of the ‘jet’, making the Taylor Cone’s apex the initial point of droplet 

formation. 

3.3 Application to Polymer Solar Cells 

 Polymer solar cells (PSCs) have almost exclusively been fabricated by using the 

spin coating technique to deposit a thin film of the organic polymer and C60 derivative.  

There are two major disadvantages of the spin coating technique for the fabrication of 

PSCs that can be overcome by using Electrospray Deposition (ESD): the inability for 

high throughput and the dissolution of previous layers by the spin coated solution’s 

solvent.  ESD has the potential to significantly increase the total yield of PSC area while 

using less material.  ESD can be set up so there is minimal wasted polymer. Whereas 

during spin coating a large amount of polymer is lost due to the non-recyclable polymer 

displaced from the high rotational speeds.   

The most commonly reported/researched polymer solar cell structure is 

ITO/PEDOT:PSS/(Polythiophene + C60 derivative)/Al.  The hole conducting layer 

PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) is a suspension 

of PEDOT:PSS in water.  When spin coating a water-soluble polymer onto the 

PEDOT:PSS, it is extremely difficult to avoid dissolution of the PEDOT:PSS layer.  ESD 

is advantageous when creating multiple layers from a common solvent since the particles 

are nearly dry upon deposition.  ESD is also more economical than other common 

deposition methods such as chemical vapor deposition, physical vapor deposition, or 

magnetic/RF sputtering [57]. 

The first polymer solar cell created with an ESD active layer was by Kim et al. in 

2010.  They utilized ESD to fabricate a bulk heterojunction active layer consisting of 
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poly(3-hexythiophene) (P3HT) and C61-butyric acid methyl ester (PCBM).  Their final 

device structure was ITO/PEDOT:PSS/(P3HT:PCBM)/Al and achieved a maximum 

efficiency of 3.25%.  The solution used for ESD was 1% wt concentration of 

P3HT:PCBM (1.2:1) in a mixture of chlorobenzene and tetrachloroethane.  After ESD, 

the active layer was subjected to solvent vapor soaking (SVS) in chlorobenzene for 1 

hour at room temperature.  The SVS treatment successfully rewelded the interfacial 

boundaries among the deposited particles as seen in Figure 14.  Impedance spectroscopy 

analysis revealed that the series resistance of the PSC was significantly reduced after SVS 

treatment.  Spin coated PSCs fabricated under identical conditions achieved an efficiency 

of 3.62% [77]. 

 
Figure 14. Optical microscope images (x600) of the ESD P3HT:PCBM active layer onto 

PEDOT:PSS coated ITO/glass.  A-D) show the ESD films from various mixtures of 
tetrachloroethane:chlorobenzene ratios of A) 90:10, B) 50:50, C) 30:70, and D) 10:90.  E) 

Film B after thermal annealing at 160°C for 15 min.  F) Film B after SVS treatment in 
chlorobenzene followed by thermal annealing at 160°C [77]. 

 
 Another approach taken to reducing the surface roughness of polymer thin films 

from ESD is by mixing acetone into the solvent.  Fukuda et al. reported in 2011 the 
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reduction in surface roughness of ESD of P3HT thin films from solutions in 

dichlorobenzene by mixing 5%, 10%, 15%, and 20% acetone by volume.  The root mean 

square (RMS) surface roughness of the thin films from the aforementioned solutions were 

3.70, 63.8, 33.1, and 2.63 nm as shown in Figure 15.  The power conversion efficiencies 

for 10% and 15% were quite low while the efficiency of the 20% solution was 1.9%, 

which wasn’t far from the spin coated device’s efficiency of 2.7%.  During the ESD of 

the thin films, the spray plume’s diameter was measured 6 mm from the tip of the spray 

capillary.  The plume’s diameter increased linearly from about 1mm at 5% concentration 

to approximately 6.2 mm at 20% concentration.  The relative dielectric constant of 

acetone (20.7) compared to dichlorobenzene (9.9) causes the plume diameter to increase 

as the concentration of acetone increases.  They concluded that the addition of acetone 

caused the formation of smaller particles from the Taylor cone, which dried more 

quickly.  In the case of the 5% concentration, there wasn’t enough acetone to fully dry 

them before deposition leaving the thin film largely unaffected.  For 10% and 15%, the 

particles dried while they were still aggregated.  A threshold was met in the case of 20% 

where the spray plume’s diameter increased enough to break down the aggregates to 

much smaller sized particles, which were fully dried upon deposition for a much 

smoother film [78]. 
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Figure 15.  (Left) AFM images of the P3HT:PCBM layers from ESD.  Concentrations of 
acetone were (a) 5, (b) 10, (c) 15, (d) 20 volume %.  (Right) J-V curves showing that the 

20% acetone by volume performed the best [78]. 
 

 There are many other applications of electrospray deposition of thin films besides 

fabrication of PSCs. Organic light emitting diodes (OLED) have been fabricated from 

electrospray technology [79].  ESD of a polymer electrolyte, yttria stabilized zirconia thin 

film in solid oxide fuel cells (SOFC) is a trending topic in fuel cell research due to the 

ability to create films thinner than 10 microns [61].  ESD has also been used for 

fabrication of both electrodes as well as the polymer electrolyte in SOFC making 

complete fabrication a one step process by merely changing solutions [80].  In lithium ion 

batteries, the conductivity of the solid electrolyte can be increased two orders of 

magnitude by creating porous electrodes via ESD [81].      
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4. MATERIALS 

 This chapter will give a brief overview of the chief materials used in creating the 

PSC devices in this work.  The chief materials include the water soluble polymer PTEBS, 

C60 tris-acid, and TiO2.  Materials used for the electrodes (gold and aluminum) are not 

discussed in this section due to their limited functionality.  Their work functions should 

align properly within the theoretical flow of electrons determined by the device’s 

structure.  Device structures and energy band diagrams are presented in the following 

chapter. 

4.1 PTEBS 

 The water soluble polymer used in this work is (sodium poly[2-(3-thienyl)-

ethoxy-4-butylsulfonate], also known as PTEBS (Figure 16).  PTEBS is water soluble 

due to the sodium sulfonate tail attached to the end of the polythiophene base which 

separates in the presence of water’s strong polarity.  PTEBS is responsible for absorbing 

light and the absorbed light excites electrons into the LUMO or conduction band of the 

PTEBS.  UV-Vis absorption data of the PTEBS is shown in Figure 17.  The PTEBS used 

in this study was purchased from QCR Solutions [82]. 

 

Figure 16.  Chemical structure of the water soluble polythiophene PTEBS. 

 The UV-Vis absorption spectrum of PTEBS is illustrated in Figure 17.  The peak 

of the absorption curve is at approximately 430 nm.  The band gap is estimated to be 
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approximately 2.0 eV due to the onset of absorption around 610 nm.  Cyclic voltammetry 

measurements of PTEBS thin films by Tran-Van et al. show oxidation onset occurs 

between +0.3 and +0.4 V vs. saturated calomel electrode (SEC) [83].  The HOMO level 

of PTEBS can be estimated at the onset point of absorption using an adjustment factor of 

4.4 to 4.7 eV to convert the energy values from SCE to energy values in a vacuum.  Thus, 

an estimate of the HOMO level can be estimated to be between -4.7 and -5.1 eV.  With an 

estimated optical band gap of 2 eV, the LUMO would be between -2.7 and -3.1 eV.  Qiao 

et al. reported PTEBS HOMO values of -5.0 and -5.3 eV and LUMO values between -2.8 

and -3.1 [84].   

 
Figure 17.  Absorption spectrum of a spin coated PTEBS thin film taken from a Lambda 

40 UV-Vis spectrometer. 
 

4.2 C60 Pyrridoline tris-acid 

 Fullerene, or C60 molecules, are not readily soluble in anything.  Chemical 

engineering of fullerenes by adding ionic tails creates soluble fullerenes.  The most 

common organic soluble fullerene investigated in PSCs is [6,6]-phenyl-C61-butyric acid 
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methyl ester (PCBM) [30].  The water soluble fullerene derivative investigated in this 

work (Figure 18): C60 Pyrridoline tris-acid (referred to as C60 tris-acid). This water 

soluble fullerene has never been previously reported for PSC device fabrication.  

However, other water soluble fullerene derivatives have successfully been used 

[44,85,86].  The LUMO levels are estimated to be in the range of  -3.7 eV and -4.7 eV 

which is similar to C60 and PCBM [85–88].   

 

Figure 18.  Chemical structure of C60 Pyrridoline tris-acid [89]. 

4.3 TiO2 

 Titanium dioxide (TiO2) is an inorganic semiconductor that is cheap, safe, and 

chemically inert.  The TiO2 layers were formed from Degussa P25 TiO2 nanopowder 

consisting of 70% anatase and 30% rutile particles in a suspension of 0.01 M acetic acid.  

Highly porous nanostructures with large surface areas  easier to fabricate from anatase 

particles [90].  The nanoparticles have an average diameter of 25 nm.  When the 

homogenous solution of suspended TiO2 nanoparticles is dried, it forms a porous inner 

penetrating TiO2 network of loosely packed nanoparticles.  The average pore size ranges 

from 20 to 100 nm [41].   

 TiO2 films only absorb in the ultraviolet region and do not absorb light in the 

visible region as shown in Figure 20.  Therefore, TiO2 is a suitable inorganic material of 
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PSCs since it allows light which is absorbable by the polymer to pass through.  The 

energy band gap is approximately 3.2 eV which is obtained from the absorption onset at 

385 nm.  The LUMO and HOMO energy levels are -4.2 ev and -7.4 eV, respectively.  

TiO2 films function as effective electron acceptors in PSC devices because of their high 

electron mobility of 0.1 cm2/Vs [91]. 

 

 

Figure 19.  Absorption spectrum for TiO2 layer [92]. 
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5. CHARACTERIZATION OF WATER SOLUBLE PTEBS POLYMER THIN 

FILMS BY ELECTROSPRAY DEPSOTION 

 In this chapter we have developed and characterized thin films of PTEBS from 

ESD for use in polymer solar cells (PSCs).  PTEBS thin films deposited by spin coating 

and drop casting have successfully been used as the electron donor in the fabrication of 

PSCs [40,41,93–97].  Water soluble polymers are advantageous in that their solvent is 

cheap and environmentally friendly.  Water soluble polymer thin films have also been 

used in the fabrication of organic transistors [98,99], LEDs [100], and fluorescent 

CdTe/polymer films [101]. The aim of this study is to understand the evolution of thin, 

nanoscale films from charged electrospray aerosols. 

5.1 Parameter optimization 

 Many different parameters were tuned so that a stable Taylor Cone could be held 

indefinitely and that particles were still slightly wet upon deposition.  An unstable Taylor 

Cone results in a loss of the spray plume and large droplets of fluid deposit on the 

substrate causing dissolution of previously deposited PTEBS.  Taylor Cones must also be 

stable for extended periods of time in order to ESD thin films of the proper thickness.  

Efficient solar cells need active layers approximately 150 nm so that they are thick 

enough to be able to absorb a significant amount of light, but thin enough to reduce high 

recombination rates due to the polymer’s low carrier mobility [32,33].  A PTEBS sample 

fabricated via ESD for 1.5 hours with a flow rate of 2 ul/min produced a film 

approximately 200 nm thick.  Therefore, a Taylor Cone needs to be stable for at least 2 

hours, even longer if depositing at a slower flow rate. 
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5.1.1 Effect of Solvent Properties 

 It was determined that electrospraying any concentration of PTEBS polymer 

dissolved in pure de-ionized water was unfeasible.  The surface tension of the water was 

too much to overcome to get a stable Taylor Cone.  Once the voltage surpassed the 

Rayleigh Limit, sporadic spitting of large droplets occurred. 

 Two different surfactants, sodium lauryl sulfate (SLS) and ammonium lauryl 

sulfate (ALS), were experimented with to decrease the surface tension of de-ionized 

water to make ESD of water feasible.  ALS was the preferred surfactant because it was a 

liquid and expected to be fully evaporated from the thin film after ESD, while the SLS 

was a fine powder that could contaminate the solar cell’s active layer.  Concentrations of 

0.5%, 1%, and 5% were unsuccessful with both surfactants.  The ALS also tended to 

separate in the syringe as time progressed leaving a thicker/denser fluid layer at the 

bottom.  

Ethanol was chosen instead of a surfactant to lower surface tension of the solution 

to be sprayed because it is cheap, safe, and highly miscible with water.  By adding 

ethanol to the solvent we were able to obtain a steady Taylor Cone during ESD.  The 

more ethanol in the solvent the more stable the ESD performed.  A 50:50 ratio of water to 

ethanol has been selected the best solvent due to great stability and consistency, while 

keeping true to the green motives of using water-soluble polymers.  Thin films produced 

from this solvent with 0.5% weight concentration of PTEBS, and electrosprayed at 6.5 – 

7.5 kV were very uniform.  However, the film density didn’t seem to be as high as a spin-

coated film.  The film was easily destroyed by gentle touch and resembled a fine coating 

of powdered sugar on a doughnut.  Thermal annealing of the film at 150°C had no effect.  
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Moving the substrate closer to the nozzle to reduce evaporation time in the air should be 

considered. 

It appears that a dense thin film (similar to one that would be spin coated) is the 

ideal morphology of an electrosprayed thin film for polymer solar cells.  Film porosity is 

often the result of fast evaporation of the solvent.  Ethanol is very volatile and being 50% 

of the solvent, it is likely that particles are nearly dry upon deposition.  Butyl carbitol is a 

common additive used when electrospraying with ethanol. Since its boiling point of 

231°C prevents fast droplet evaporation compared to ethanol’s boiling point of 78°C.  

Chen et al. reported that electrospraying butyl carbitol with ethanol at a 50:50 ratio 

resulted in semi-dry particles converging together on the substrate to form a dense 

uniform layer.  Lower concentrations of butyl carbitol (15:85 volume ratio) resulted in a 

reticular structured particles closely packed together to make a film [102].  

5.1.2 Nozzle Type and Spray Modes 

 Needle size (internal diameter) directly affects the type of stable spray attainable 

for a given solution.  A 0.5% solution of polymer in water and ethanol (1:1 ratio) is 

unable to sustain a single steady Taylor Cone in large needle sizes, but can have multiple 

stable Taylor Cones.  Multiple stable Taylor Cones produce a great spray however a 

pattern forms on the deposition substrate.  To overcome the pattern and create a smooth 

thin film the substrate needs to be in constant motion within the spray plume.  A moving 

grounded electrode adds complexity to the ESD process.  Attempts to create a moving 

grounded electrode failed because the Taylor Cones would become unsteady since the 

electric field lines weren’t constant.  This was a limitation of available equipment.  
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Therefore, the smallest needles tested thus far, 30 gauge (108 microns), provide the most 

stable Taylor Cones in single jet mode. 

 The shape of the needle tip also affects the stability of the Taylor Cone.  Blunt 

tipped needles fared well at maintaining a Taylor Cone, but a hypodermic needle 

(beveled tip) provides much more stability.  This is due to the geometry of the needle 

having a fine tip on only one side.  A Taylor Cone is able to form at the tip and is much 

smaller than a Taylor Cone formed around the entire inner diameter of a blunt tipped 

needle.  The 30 gauge hypodermic needle also provided more stability than a handmade 

stretched glass tip. 

5.1.3 Flow Rate 

The necessary flow rate for steady state electrospray should equal the volume of 

droplets displaced from the apex of the Taylor Cone so that the Cone maintains a constant 

volume.  The flow in the ESD process is not driven by the syringe pump, it is an 

electrostatically driven process.  Higher voltages will spray greater volumes, but the 

voltage can’t exceed a certain threshold or the spray mode will rapidly transition to multi-

jet mode.  It has been found that a flow rate of 0.5 – 2.5 microliters per minute is the 

optimum flow rate range for maintaining a steady Taylor Cone.  

5.1.4 Solution Concentration 

Solution concentration is directly proportional to the surface tension of the liquid 

and particle size upon deposition [45].  Therefore, solutions with low concentrations of 

polymer lead to lower surface tensions and smaller particle size.  Low concentrations 

increase the duration of ESD required to form a thick enough layer.  Our research shows 

that concentrations less than 0.5% spray nearly identical to pure solutions (spraying only 
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the solvent).  A 0.5% concentration is able to produce a thick enough (200 nm) in less the 

1.5 hours, which appears to be a reasonable amount of time. 

5.1.5 Solvent Vapor Soaking 

 Solvent vapor soaking (SVS) is a technique used to control internal and external 

morphologies of thin films from ESD in PSCs [77].  SVS is the term for exposing the 

ESD to the solvent vapor for an extended period of time.  The solvent vapor gently 

dissolves the particles and welds their interfacial boundaries back together.  This method 

has briefly been investigated by filling an oven full of steam and then introducing the 

substrate.  Condensation of the steam ruined the film. 

5.2 Experimental 

Transparent conductive FTO (fluorine doped tin oxide) coated glass substrates of 

8 – 12 Ω sheet resistance were purchased from Hartford Glass Company.  A highest 

grade V1 AFM mica disc (purchased from Ted Pella) was then adhered to the center of 

the FTO glass substrate.  The mica disc was cleaved immediately before sputtering with a 

2.7 nm platinum film.   

 The water-soluble polythiophene PTEBS was purchased from QCR Solutions.   A 

stock solution of PTEBS was created by dissolving in DI water at a concentration of 2% 

by weight.  The solution was stirred for three days at room temperature.  Water and 

ethanol were added to dilute the stock solution to 0.5% with a solvent ratio of 1:1.  The 

diluted solution was then sonicated for 15 minutes immediately before being loaded into 

a 1 ml syringe with a 30 gauge hypodermic needle. 
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Figure 20.  Schematic of horizontal ESD apparatus used in experiments. 

Figure 21 is a schematic of the horizontal electrospray configuration used to 

deposit the PTEBS thin films.  The distance between the needle tip and the grounded 

aluminum plate was 10 cm.  The flow rate through the needle, controlled by a syringe 

pump, was 1.5 μl/min and the applied voltage was 8 – 9 kV.  The FTO substrate was 

grounded to the aluminum plate using copper tape before the syringe pump and voltage 

were activated.  Films were analyzed using a Veeco Icon Dimension AFM, Ambios XP-1 

profilometer, and a Lambda 35 UV-Vis spectrometer. 

5.3 Results and Discussion 

One of the most important requirements for creating a uniform thin film from 

ESD is to maintain a stable Taylor cone at the tip of the spraying capillary. Steady Taylor 

cones result from the proper balance of the following parameters (achieved at the values 

listed above): distance between spray tip and grounded substrate, flow rate through the 

needle, applied voltage, and solution properties.  Interruptions in steady flow from the tip 
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of the Taylor cone can result in the emission of large droplets which degrade film quality. 

Ethanol was added to the solution to reduce the liquid surface tension compared to a pure 

water solution.  A solution concentration of 0.5% was found to result in good Taylor cone 

stability. The syringe pump flow rate was adjusted to replenish the fluid removed by the 

aerosol and such that the ESD process remained electrostatically driven.  The applied 

voltage was varied between 8 – 9 kV depending on the flow rate and distance between 

the needle and grounded substrate.  A distance of 10 cm was determined to be optimal for 

thin film fabrication due to the amount of time needed for evaporation of the solvent in 

droplets.  The voltage was increased from 0 kV and held constant once a stable Taylor 

cone was present at the tip of the beveled edge of the hypodermic needle (Figure 22).  

Ksapabutr et al. also reported Taylor cone stability at the orifice of the nozzle apex [58]. 

 

Figure 21.  ESD spray formation from 30 G hypodermic needle [58]. 

 Figure 23 shows optical microscope images of PTEBS thin films from ESD where 

an unstable (left) and a stable (right) Taylor cone were maintained for the duration of the 

deposition.  An unsteady Taylor cone resulted in the spitting of large droplets (orders of 

magnitude larger) from the spray capillary.  The large droplets would dissolve the 

previously deposited film upon deposition and displace the PTEBS in circular rings.  A 

stable Taylor cone created films free of large defects due to the constant deposition of 

smaller droplets. 
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Figure 22.  Optical microscope image at 10x of PTEBS films where a Taylor cone was 

(left) unstable and (right) stable. 

 
 AFM characterization of films from ESD was carried out on cleaved mica discs 

adhered to FTO coated glass (Figure 24) to provide a flat substrate to analyze particle size 

and film roughness.  Prior to electrospraying the polymer, the cleaved mica was sputtered 

with a 2.7 nm thick layer of platinum to create the conductive surface necessary for ESD.  

The platinum covered mica had a root mean square (RMS) surface roughness of 87.3 pm. 

 
Figure 23.  Image of a substrate after ESD.  The center circle is the cleaved mica adhered 

to the FTO coated glass.  A 2.7 nm layer of platinum was sputtered onto the mica and 
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glass.  The top left and bottom right corners are free of PTEBS as they were conductively 
taped to the grounded aluminum plate of the electrospray apparatus. 

 
 Figure 25 is an AFM image showing the topology of a mica substrate covered 

with PTEBS particles after 1.5 minutes of ESD.  The observed particle diameter ranges 

from 25 – 312 nm.  The particles appear to be slightly wet upon deposition as evidenced 

by the residual rings seen around the particles.  The rings are believed to have been 

created when the solvent from the droplets evaporated. Figure 26 is an AFM image of the 

surface profile of PTEBS particles after 1.5 minutes.  There were 4 particles higher than 

50 nm with the highest peak being 65 nm, while the majority of the particles were shorter 

than 25 nm.   

 
Figure 24.  AFM topology of mica substrate covered with PTEBS particles after 1.5 

minutes of ESD. 
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Figure 25.  AFM profile image of PTEBS after 1.5 minutes of ESD. 

 Figure 27 is a histogram of the observed particle diameter from a 25 μm2 section 

of mica after 3 minutes of ESD with PTEBS.  Particle density was the only observed 

difference between 1.5 and 3 minutes of ESD.  As can be seen, the majority of particles 

have diameters less than 52 nm and there are few particles in the size ranges above 77 

nm.   

 

Figure 26.  Particle diameter histogram of 25 μm2 after ESD for 3 minutes. 

 Figure 28 is an AFM image showing the topology of a mica substrate covered 

with PTEBS particles after 5 minutes of ESD.  The particles have begun to cluster around 

each other due to a fairly constant symmetrical spray plume.  The particle deposition 

pattern is believed to be influenced by electrostatic forces.  PTEBS is a weakly 

conducting polymer and only particles in close proximity to the grounded substrate are 
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discharged quickly.  Deposited particles furthest away from the grounded substrate retain 

some charge and repel oncoming charged droplets toward a PTEBS-free region of the 

substrate.  This explanation is referred to as ‘preferential landing’ and is supported by 

previous literature on ESD of thin films[81,102–104].  Deposited particles appear to have 

coalesced and merged together due to the presence of a small amount of solvent upon 

deposition.  This is supported by the residual rings observed in Figure 25. Figure 29 is an 

AFM image of the surface profile of the PTEBS covered mica substrate after 5 minutes of 

ESD.  The profile shows approximately 3 maximums above 50 nm with the majority of 

particles being less than 28.5 nm. 

 
Figure 27.  AFM topology of mica substrate covered with PTEBS particles after 5 

minutes of ESD. 
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Figure 28.  AFM profile image of PTEBS after 5 minutes of ESD. 

 Figure 30 is an image of the AFM topography of a mica substrate coated with a 

PTEBS thin film from ESD after 40 minutes.  Due to the deposition of droplets, the 

particles coalesced and merged together to form a contiguous thin film.  The RMS 

surface roughness was 20.2 nm and the film had an average thickness of 64.7 nm.  Small 

valleys can be seen where the film expanded from larger particles due to preferential 

landing.  Once the mica substrate was covered, smaller particles were no longer 

depositing on the thin film.  Because the polymer film was poorly conducting, the small 

particles were electrostatically repelled by the previously deposited polymer (which still 

has a charge) and are attracted to the grounded FTO substrate and aluminum plate.  Large 

particles continued to be deposited due to inertial forces dominating electrostatic forces 

resulting in large protrusions on the surface.   
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Figure 29.  AFM topology of mica substrate covered with PTEBS thin film after 40 

minutes of ESD. 

 

 

Figure 30.  AFM angled image of PTEBS thin film after 40 minutes of ESD. 

PTEBS thin films from ESD were characterized by a UV-Vis spectroscopy to 

ensure the PTEBS was not chemically altered through the ESD process and that the films 

maintained their absorption properties for use in PSCs.  Figure 32 shows the absorption 

spectra of PTEBS films from ESD (600 nm and 1.2 μm) and drop casting (7 μm).  The 



www.manaraa.com

 

 

55 

absorption maximum occurred at wavelengths between 420 nm and 430 nm for all three 

films.  These absorption maximums show no significant differences and correspond with 

previously reported values leading us to believe there was no chemical alteration by the 

ESD process [41,83,84].  The increased absorption shown in Figure 32 outside of the 

peak was caused by light scattering from the rough surface and internal grain boundaries 

within the ESD films [105,106]. 

 
Figure 31.  Absorption spectrum of PTEBS thin films from ESD (600 nm and 1.2 μm) 

and from drop casting (7 μm). 
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6. HYBRID SOLAR CELLS WITH TiO2 NANOSTRUCTURES 

Hybrid solar cells (HSC) consist of an inorganic semiconducting electron acceptor 

and an organic polymer electron donor sandwiched between a transparent conducting 

oxide anode and a metal cathode.  They have attracted considerable attention due to low 

production cost, solution processing, and an array of different materials suitable for 

device fabrication [107–109].  HSCs take advantage of inorganic semiconductors’ high 

electron mobilities (TiO2≈ 0.001 - 10 cm2V-1s-1) [110,111] to overcome the poor hole 

mobilities in organic polymers (polythiophene polymers ≈ 0.00001 – 0.1  cm2V-1s-1) 

[112–115] which lead to short electron diffusion lengths (~10 nm) [116,117].  Therefore, 

the interface between the inorganic semiconductor and organic polymer in HSCs must be 

within one diffusion length of exciton generation to effectively separate excitons into 

holes and electrons.  This presents a challenge to bilayer devices due to a limited 

interfacial contact area between the electron donor and acceptor layers.  HSC devices 

have been designed with nanostructures (nanorods, nanoribbons, and inter-penetrating 

layers) to increase the interfacial surface area [36,38,118]. 

The polymers poly(3-hexylthiophene) [P3HT], poly(2-methoxy-5-(2-ethyl-

hexyloxy)-p-phenylenevinylene) [MEH-PPV], and poly(3-octylthiophene) [P3OT] have 

widely been reported as electron donor materials in TiO2 HSCs [94,119–121].  These 

polymers are soluble in organic solvents such as toluene, chloroform, chlorobenzene, 

tetrahydrofuran, and xylene which are toxic in nature [16].  Commercialization of 

polymer based solar cells will require generation of several gigwatts of power [44], which 

corresponds to a solar cell (~5% efficient) area of thousands of square meters [4].  The 

toxicity of organic solvents makes them a poor option on this order of magnitude due to 
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increased costs and difficulty of fabrication associated with environmental hazards.  

Water soluble polymers are an obvious alternative due to water’s prevalence, low cost, 

and safety.  The water soluble polymer PTEBS has been reported as an electron donor 

material in TiO2 HSCs by Qiao et al. [40,41,84] and in polymer solar cells using fullerene 

derivatives [95,97]. 

In this work HSC devices were fabricated with a bi-layer structure of 

FTO/TiO2/PTEBS/Au where ESD was compared to spin coating thin-films of the water-

soluble polymer PTEBS above of an interpenetrating TiO2 layer.  Figure 33 shows an 

energy band diagram of the HSC devices fabricated, while Figure 34 depicts a device 

schematic.  Light is absorbed by the PTEBS and an exciton is excited from the HOMO (-

5.2 eV) to the LUMO (-3.2 eV) energy level [84].  The exciton is then separated into an 

electron and hole at the LUMO (-4.2 eV) of the TiO2 is [118].  The electron travels to the 

fluorine-doped tin oxide (FTO) (-4.4 eV) electrode and the hole goes to the gold (-5 

eV)electrode [122,123].  Average current densities were then modeled using the 

characteristic equation of an equivalent circuit of a solar cell. 

  
Figure 32.  Energy band diagram for FTO/TiO2/PTEBS/Au devices.  The band gap of 

PTEBS is ~2 eV.  The estimated range of the LUMO is 2.7~-3.2 eV and the HOMO 
ranges from and -4.7~-5.2 eV [40].  The work functions of FTO, TiO2, and gold are -4.4 

eV [122], -4.2 eV [118], and -5 eV [123], respectively. 
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Figure 33.  Schematic of bilayer heterojunction hybrid solar cell with configuration of 

glass/FTO/TiO2/PTEBS/Au [40]. 

 

6.1 Experimental 

Transparent conductive FTO coated glass substrates of 12.5 – 14.5 Ω sheet 

resistance were purchased from Hartford Glass Company.  FTO substrates were then 

cleaned in ultrasonic baths of detergent, acetone, isopropanol, and water for 15 minutes 

each.  Degussa P25 TiO2 powder was suspended in 0.1 M acetic acid by sonication for 12 

hours.  The TiO2 suspension was then left alone for 2 days to allow large particles to 

settle to the bottom before spin coating onto the FTO at 1700 rpm for 40 seconds to 

obtain a 2.1 μm thick layer.  The TiO2 was annealed for 1 hour at 500°C. 

PTEBS was purchased from QCR solutions and dissolved in water at a 2% (by 

weight) concentration.  The PTEBS layer was deposited by spin coating at 800 rpm to 

create a ~100 nm thick layer.  Devices with a PTEBS layer from ESD were from a 0.5% 

solution in a water and ethanol blend with a 1:1 ratio before being loaded into a 1ml 

syringe with a 30 G hypodermic needle.  The addition of ethanol was needed to lower the 

surface tension of the solution to maintain a steady Taylor cone for adequate film 

formation.  Figure 21 illustrates a schematic of the electrospray configuration used to 

deposit PTEBS layers from ESD.  The TiO2 coated FTO substrate was adhered to an 

aluminum plate with copper tape.  The distance between the needle tip and the grounded 

aluminum plate holding the FTO substrate was 7 cm.  The flow rate through the needle, 
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controlled by a syringe pump, was 2 μl/min and the applied voltage was 7.5 – 9 kV.  The 

ITO substrate was grounded to the aluminum plate and sprayed for 1 hour to create a 

~100 nm thick layer.  The 80 nm thick gold electrodes were then deposited via sputter 

coating through a mask to create 0.06 cm2 devices. 

6.2 Modeling of Equivalent Circuit   

A single diode electrical equivalent circuit (Figure 35) of a solar cell was used as 

a model to compute output current densities (Jout).  The equation describing the current-

voltage characteristics of a solar cell is represented by Equation 1. 

 
Figure 34.Equivalent circuit of a solar cell. 

 

𝐽𝑜𝑢𝑡 = −𝐽0 �𝑒𝑥𝑝 �
𝑉𝑜𝑢𝑡 + 𝑅𝑠𝐽𝑜𝑢𝑡

𝑛𝑉𝑡ℎ
� − 1� −

𝑉𝑜𝑢𝑡 + 𝑅𝑠𝐽𝑜𝑢𝑡
𝑅𝑠ℎ

+ 𝐽𝑝ℎ 

 
Equation 1.  Current-Voltage characteristic equation of a solar cell. 

 
Where Jout is the output current density, J0 is the saturation current, Vout is the output 

voltage, Rs is the series resistance, n is the diode ideality factor, 𝑉𝑡ℎ = 𝑘𝑇
𝑞

 is the thermal 

voltage (k is the Boltzmann constant, T is the temperature, and q is the elementary 

charge), Rsh is the shunt resistance, and Jph is the photocurrent.  

Equation 1 is a transcendental equation that expresses the current density output 

Jout as a function of itself and Vout.  An explicit exact solution for Equation 1 can be 
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computed using the Lambert W function [124,125].  Equation 1 must be expressed in the 

form of 𝜔𝑒𝜔 = 𝑥 to utilize the Lambert W function where: 

 

𝜔 = −
𝑅𝑠𝐽𝑜𝑢𝑡 + 𝑉𝑜𝑢𝑡

𝑛𝑉𝑡ℎ
+
𝑅𝑠�𝐽0 + 𝐽𝑝ℎ� + 𝑉𝑜𝑢𝑡
𝑛𝑉𝑡ℎ�1 + 𝐺𝑝𝑅𝑠�

 

 
and 
 

𝑥 =
𝑅𝑠𝐽0

𝑛𝑉𝑡ℎ�1 + 𝐺𝑝𝑅𝑠�
𝑒𝑥𝑝 �

𝑅𝑠�𝐽0 + 𝐽𝑝ℎ� + 𝑉𝑜𝑢𝑡
𝑛𝑉𝑡ℎ�1 + 𝐺𝑝𝑅𝑠�

� 

 
where Gp = 1/Rsh.  The solution to 𝜔𝑒𝜔 = 𝑥 is the function Lambert Wk(x) where the 

branch (k) of the solution corresponds to k = 0 which satisfies Lambert W0(x) = 0.  For 

simplification Lambert W = W, the explicit solution of  

Equation 1 becomes [124,125]: 

𝐽𝑜𝑢𝑡

= −
𝑛𝑉𝑡ℎ
𝑅𝑠

𝑊 �
𝑅𝑠𝐽0

𝑛𝑉𝑡ℎ�1 + 𝐺𝑝𝑅𝑠�
𝑒𝑥𝑝 �

𝑅𝑠�𝐽0 + 𝐽𝑝ℎ� + 𝑉𝑜𝑢𝑡
𝑛𝑉𝑡ℎ�1 + 𝐺𝑝𝑅𝑠�

�� −
𝑉𝑜𝑢𝑡
𝑅𝑠

+
𝑅𝑠�𝐽0 + 𝐽𝑝ℎ� + 𝑉𝑜𝑢𝑡
𝑛𝑉𝑡ℎ�1 + 𝐺𝑝𝑅𝑠�

 

 
Equation 2.  Exact analytic solution of the current-voltage characteristic equation of a 

solar cell. 
 

6.3 Results and Discussion 

Table 2 displays the minimum, maximum, and average values of the short circuit 

current (Jsc), open circuit voltage (Voc), and efficiency (η) of 15 different HSC with 

PTEBS layers from ESD and spin coating.  Figure 36 is a current density (J) – voltage 

(V) plot of the average current density values of all devices for each construction type.  

The average Jsc for ESD devices was 0.0443 mA/cm2 which was double the average Jsc of 

0.0220 mA/cm2 for spin coated devices.  The average Voc for ESD devices was 0.3406 V 

which was nearly half the average Voc of 0.6493 V for spin coated devices.  The average 

efficiency for ESD devices was 0.006%, slightly lower than the spin coated device 
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efficiency of 0.0076%.  The maximum efficiencies achieved from both device 

constructions were comparable at 0.009%.  The average standard deviation of the current 

densities was 0.0040 mA/cm2 for the spin coated device construction and 0.0085 mA/cm2 

for the ESD device construction.  ESD constructed devices have greater variations in 

morphology of the PTEBS layer which led to higher standard deviations and greater 

performance variation. 

Table 2.Table of minimum, maximum, and average values of short circuit current (Jsc), 
open circuit voltage (Voc), and efficiency (η) of 15 different HSC with electron donor 

layers from ESD and spin coating. 

 Minimum Average Maximum 
 Jsc 

(mA/c
m2) 

Voc 
(V) 

η 
 (%) 

Jsc 
(mA/cm2

) 

Voc 
(V) 

η 
 (%) 

Jsc 
(mA/cm2

) 

Voc 
(V) 

η 
 (%) 

ESD 0.0352 0.340
0 

0.003
5 

0.0443 0.340
6 

0.006
0 

0.0532 0.420
0 

0.008
6 

Spin 0.0186 0.580
0 

0.006
0 

0.0220 0.649
3 

0.007
6 

0.0245 0.700
0 

0.008
8 

 

 
Figure 35.  Average J – V curves of 15 different devices from each deposition method of 
the PTEBS layer.  The error bars show the standard deviation of the current along each 
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measured voltage value. Error bars were omitted from points at the intersection for 
clarity. 

 
The substantial differences in Jsc and Voc between the two different device 

constructions are likely due to the differences in the interfacial contact area between the 

TiO2 and the PTEBS, and the morphology of the PTEBS layer.  Figure 37 is an SEM 

image of the TiO2 inter-penetrating network of nanoparticles. The average pore size is 

~50 nm with a range of 10 – 100 nm.   

 
Figure 36.  SEM image of the inter-penetrating nanocrystalline TiO2 film at 120,000x 

magnification. 
 

When using the spin coating technique, the surface tension of the water inhibits 

the PTEBS solution from filling the nano-pores of the TiO2 layer.  Poor filling of porous 

TiO2 nanostructures has been extensively reported as a deficiency in HSC [111,112,126–

129].  By contrast, the ESD technique can lead to improved pore filling for two reasons.  

First, ESD generates particles small enough to penetrate the pores in the TiO2 film.  A 

histogram of particle diameters from ESD (Figure 27) reveals that the majority of PTEBS 
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particles upon deposition are in the first bin, which ranges between 20 – 51.9 nm and has 

a median of 39.5 nm.  The particles are able to penetrate the pores of the TiO2 film and 

increase the interfacial contact area between the TiO2 and PTEBS layers.  In addition, the 

particles generated by ESD are electrically charged and are driven by the applied electric 

field.  The electrostatic force also helps push the particles into the nano-pores leading 

improved interfacial contact area. 

The ESD film suffers from interfacial boundaries from individual PTEBS 

particles that did not fully coalesce upon deposition.  Kim et al. reported that these 

boundaries diminish the performance of polymer solar cells [77].  Figure 38 is an AFM 

image of a PTEBS film from ESD showing that the film surface has some interfacial 

boundaries between particles even though it is a contiguous film. Film irregularities are 

believed to be the reason for a decrease in Voc.  The ESD film had a root mean squared 

surface roughness of 20.2 nm.  The uniformity of a spin coated film as compared to an 

ESD film is a likely source for an increased standard deviation of output current density 

in devices with ESD construction. 

 

Figure 37.  AFM image of PTEBS film from ESD. 
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 The average J – V curves from both construction techniques were then modeled 

using the characteristic equation of solar cells (Equation 1).  Figure 39 shows the model 

curves along with the average illuminated J – V curves.  The following parameter values 

used in the model were kept constant and agree with previously reported values [130–

132]: Rs = 4.2 Ω , Rsh = 100 Ω, n = 2.14, k = 1.38x10-23 J/K, q = 1.6x10-19 C, and T = 300 

K. The values of the series and shunt resistance were chosen because they gave the 

curves the proper shape.  The reverse saturation current density (J0) and the photocurrent 

density (Jph) were the used to fit the experimental curves. .  The spin coated J – V curve 

agreed with the model at values of Jph = 0.047 mA/cm2 and J0 = 3.72x10-5 mA/cm2, and 

the ESD J – V curve agreed to the model with values of Jph = 0.023 mA/cm2 and J0 = 

2.2x10-7 mA/cm2.  Increases in Jph due to an increase in the interfacial contact area 

between the polymer and TiO2 were also reported by Tanaka [133].  Our model shows 

that devices with PTEBS films from ESD generate double the amount of Jph, and an 

increase of two orders of magnitude in the J0 compared to devices constructed from spin 

coating.  The increase in J0 is attributed to poor film quality of ESD PTEBS films.  The 

interfacial boundaries between PTEBS particles increase leakage current through the 

device sidewalls similar to decreasing Rsh, which is known to decrease Voc 

[77,124,125,134,135].  Our model responds better by varying J0 rather than Rsh to 

demonstrate the effect of poor film quality on Voc.  
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Figure 38.  Illuminated average J – V curves from experimental data and computational 
models.  Model lines varying Jph held a constant J0 = 2.2 x 10-7 mA/cm2.  Model lines 

varying Jo held a constant Jph = 0.047 mA/cm2. 
 

 Figure 40 shows the dark J – V curves of typical devices of each construction type 

along with the model curves.  The J0 values in the model curves were the best fits (J0spin = 

3.72x10-5 mA/cm2 and J0ESD = J0 = 2.2x10-7 mA/cm2) from the illuminated J – V curves 

and Jph = 0 mA/cm2.  The ESD model agrees very well with the experimental data while 

the spin coated model deviates slightly at higher voltages.  However, but the trend of the 

curvature is largely in agreement. 
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Figure 39.  Dark J – V curves of experimental data and model. 
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7. POLYMER SOLAR CELLS WITH FULLY WATER SOLUBLE ACTIVE 

LAYERS BY ELECTROSPRAY DEPOSITION 

The structure of a polymer solar cell (PSC) (and hence efficiency) is intimately 

linked to the processing conditions during fabrication, and commercialization of PSCs 

will require reliable and scalable fabrication processes.  Traditional laboratory-scale PSC 

devices are commonly prepared by a two step solution process where two different layers 

are spin casted consecutively.  The first layer typically being a dispersion of poly(3,4-

ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) in water [136], and the 

second being a bulk heterojunction active layer dissolved in an organic solvent [107].  

However, spin casting is a low throughput and high waste process where much of the 

polymer is lost due to the high rotational speeds.  A second problem with the traditional 

laboratory fabrication method is the inability for consecutive layering from common 

solvents.  In order to add multiple layers of polymer, a solvent orthogonal to the previous 

layer is needed to prevent dissolution.  Another potential disadvantage associated with the 

spin casting of a bulk solution is the presence of a vertical phase gradient due to the 

penetration of less soluble components [137,138].  These obstacles hinder simple, low-

cost, commercially favorable solution based processes. 

Electrospray deposition (ESD) is a method of depositing thin films which can 

overcome the problems associated with spin coating.  First, ESD is inexpensive, efficient 

(minimal waste), and has a relatively high throughput [45] making it practical for large 

scale commercialization.  Second, it overcomes the solubility issue between two adjacent 

layers.  ESD generates nebulized aerosol particles which, depending on solvent volatility, 

can be nearly dry upon deposition so that prior layers do not dissolve.  Recently, there 
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have been reports of successful fabrication of PSCs consisting of P3HT and PCBM 

electrosprayed from organic solvents onto a spin casted layer of PEDOT:PSS 

[77,78,139].  ESD can also be advantageous for controlled vertical (uniform and gradient) 

deposition of thin-films. 

Another major issue in the commercialization of PSCs is the toxic nature of 

organic solvents typically used in the deposition process.  Organic solvent exposure can 

be toxic to the nervous system, and can lead to reproductive damage, liver and kidney 

damage, respiratory impairment, cancer, and dermatitis [16].  Large scale application of 

PSC relies on fabrication volumes generating several gigawatts of power [44], which 

corresponds to a PSC (~5% efficient) area of thousands of square meters [4].  Organic 

solvents are a poor option on this order of magnitude rendering environmentally friendly 

alternatives imperative.  Environmentally friendly working conditions would significantly 

reduce ease and cost of commercializing PSCs.   

Water is an obvious alternative solvent due to its prevalence and safety, however 

low efficiencies (<1%) of devices fabricated from water soluble polymers have prevented 

it from being widely investigated as a viable solvent for PSC.  Q. Qiao and J.T. 

McLeskey were the first to fabricate a PSC from a water-soluble polymer, sodium 

poly[2-(3-thienyl)-ethyloxy-4-butylsulfonate] (PTEBS), in 2005.  They reported an 

efficiency of 0.13% from a device structure of FTO/TiO2/PTEBS/Au [40].  A.J. Miller et 

al. has reported the highest efficiency (0.56%) PSC device from a water-soluble polymer 

(PTEBS) [97].  In 2011, Sondergaard et al. reported a PSC from all water processing with 

an efficiency of 0.7%, the highest known from water.  They modified poly-3-
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carboxydithiophene (P3CT) and PCBM into analogues for aqueous processing, through 

neither are truly water-soluble [44].  

In this work ESD was utilized to create bulk heterojunction (BHJ) thin-films of 

the water-soluble polymer PTEBS (Figure 16) and the fullerene derivative C60 pyrrolidine 

tris-acid (Figure 18) for use in polymer solar cells.  Water solubility combined with ESD 

enables fabrication of PSCs in environmentally friendly conditions with low cost and 

high throughput, a combination that is necessary for commercialization.  ESD enables 

consecutive deposition of two water soluble layers on top of one another; the hole 

conducting PEDOT:PSS layer and the BHJ layer of the water soluble polymer and 

fullerene derivative.  Figure 41 shows an energy band diagram of the 

ITO/PEDOT:PSS/bulk(PTEBS+C60)/Al PSC device configuration. The ratio of PTEBS 

to C60 pyrrolidine tris-acid was varied from 1:1 to 1:3. 

 

 
Figure 40.  Energy band diagram of PSC with bulk heterojunction active layer comprised 

of water soluble materials, PTEBS and C60 derivative. 

 
PTEBS was chosen to be the electron donor of the active layer due to the numerous 

reports of successful PSC devices [40–42,84,94,96,97,140].  The HOMO and LUMO 
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energy levels of PTEBS are -5.2 and -3.2 [84].  The LUMO of C60 tris-acid is estimated 

to be -4.2 eV using values from similar water-soluble fullerenes reported in the literature 

[85–88]. 

7.1 Experimental 

Transparent conductive ITO coated glass substrates of 8 – 12 Ω sheet resistance 

were purchased from Sigma Aldrich.  ITO was then etched completely from the edge of 

the glass using HCl to form a patterned bottom electrode for testing purposes before 

being sonicated in detergent, acetone, isopropanol, and water for 15 minutes each.  

PEDOT:PSS (Clevios P VP Al 4083) was then spin coated at 5000 rpm for 40 seconds 

and annealed at 100°C for 1.5 hours.   

 The water-soluble polythiophene PTEBS was purchased from QCR Solutions.   

The water-soluble C60 pyrrolidine tris-acid was purchased from Sigma Aldrich.  Separate 

stock solutions of PTEBS and C60 were created by dissolving in DI water at a 

concentration of 2% by weight.  Solutions were stirred for three days at room 

temperature.  Stock solutions were then combined to form a bulk solution.  Water and 

ethanol were added to dilute the bulk solution to 0.5% with a solvent ratio of 1:1.  The 

bulk solution was then sonicated for 15 minutes immediately before being loaded into a 1 

ml syringe with a 30 gauge hypodermic needle. 

Figure 21 illustrates a schematic of the electrospray configuration used to deposit 

the bulk heterojunction active layer.  The distance between the needle tip and the 

grounded aluminum plate was 7 cm.  The flow rate through the needle, controlled by a 

syringe pump, was 2 μl/min and the applied voltage was 7.5 – 9 kV.  The ITO substrate 

was grounded to the aluminum plate and sprayed for 1.5 hours.  The 100 nm thick 
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aluminum electrodes were then deposited via electron beam evaporation (at 10-6 Torr) 

through a mask to create six different 0.115 cm2 devices. 

Device characterization was performed under 100 mW/cm2 illumination using 1.5 

AM light from a Spectra-Physics 96000 150 W Solar Simulator.  Current and voltage 

source/measurements were obtained using a Keithley 236. 

7.2 Results and Discussion 

The current density - voltage curves of the PSCs are shown in Figure 42.  Active 

layers with ratios of PTEBS to C60 tris-acid of 1:1, 1:2, and 1:3 all created working 

devices.  The highest power conversion efficiency observed was 0.0022% from the 

device with a 1:2 ratio.  The efficiency of the 1:3 ratio device was 0.0021% while the 1:1 

ratio device performed at 0.00098%.  The short circuit current density (Jsc) increased 

from 0.0069 mA/cm2 to 0.0164 mA/cm2 and then to 0.0241 mA/cm2 as the amount of C60 

tris-acid increased.  The presence of C60 tris-acid molecules is directly related to electron 

mobility and improved device currents as its percentage increased.  The open circuit 

voltage (Voc) increased from 0.48 V in the 1:1 ratio device to 0.56 V in the 1:2 ratio 

device.  The Voc then decreased to 0.40 V in the 1:3 ratio device making it have the 

lowest Voc while achieving the highest Jsc.  Based on these results we conclude that the 

optimal ratio is between 1 part PTEBS and between 2 and 3 parts C60 tris-acid by weight.   
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Figure 41.  J-V Curves of PSC with Water-Soluble Active Layers from ESD.  The ratio 

of the polymer PTEBS to C60 tris-acid is varied from 1:1 to 1:3. 
 

 The fill factor for the 1:2 ratio device was the highest at 0.25, while the 1:1 and 

1:3 ratio devices were 0.16 and 0.23, respectively.  Devices with higher fill factors extract 

more electrical power from a more constant current over a higher voltage as seen in the 

1:2 ratio device. 

 Interestingly, these polymer-based devices exhibited excellent thermal stability. 

Initial current-voltage measurements were taken immediately after removal from vacuum 

(aluminum electrode deposition).  Devices were then annealed at 150°C for 1 hour, 

cooled to room temperature, and then measured again.  Resulting current-voltage 

measurements were nearly identical to initial measurements. 
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Figure 42.  SEM image of aluminum electrode above an active layer from ESD. 

 
 The thickness of the PEDOT:PSS and active layer combined ranged between 200 

and 350 nm as measured by an Ambios XP-1 profilometer.  The thickness of the 

PEDOT:PSS layer was immeasurable due to it being thinner than the surface roughness 

of the ITO layer, but is expected to be less than 50 nm.  Figure 43 shows a typical SEM 

image of a device at x12,000 magnification.  The surface was not smooth and the ESD 

produced films consisting of relatively uniform sub-micron particles.  The average 

particle appears to be less than 500 nm in diameter and consists of the PTEBS:C60 active 

layer coated with a 100 nm aluminum electrode layer, . These sub-micron particles of a 

polymer-C60 blend offer promise for the development of a new class of devices based on 

nanoparticles where the small diameter of the particle will allow for improved hole 

collection. 

 The optimal balance between PTEBS and C60 occurred between 1 part PTEBS 

and 2 to 3 parts C60.  This is believed to be where the percolation threshold of C60 occurs.  

Figure 44 illustrates the three different active layer ratios studied.  In the 1:1 ratio there is 
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an insufficient amount of C60 to harvest the excitons from the PTEBS and transfer the 

electrons to the aluminum electrode.  The excitons generated near the aluminum electrode 

are likely the only source of photocurrent, whereas excitons generated throughout the rest 

of the active layer may not be in close proximity to a C60 molecular chain that is in 

contact with the aluminum electrode.  Excitons that undergo charge separation at a C60 

interface that does not extend to the aluminum electrode are likely to recombine due to 

poor carrier mobility in the polymer.  In the 1:2 and 1:3 ratio devices, the percolation 

threshold of C60 was achieved demonstrated by the increase in Jsc.  The 1:3 ratio device 

had insufficient photon absorption due to a deficiency of PTEBS, leading to a reduced 

Voc.   

 
Figure 43.  Illustration of active layers with varying PTEBS:C60 ratios.  Percolation 

threshold of C60 was achieved in devices B and C, where C60 molecular chains extend 
randomly throughout the active layer. 
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8.  CONCLUSIONS 
 

We have demonstrated the ability of ESD to fabricate water soluble polymer 

(PTEBS) thin films of less than 100 nm for use in organic polymer solar cells, light 

emitting diodes, and SAW sensors.  Maintaining a steady Taylor cone and slightly wet 

particle deposition were the most critical aspects in fabricating thin films from ESD 

which was achieved by adjusting the following parameters: distance between spray tip 

and grounded substrate, flow rate through the needle, applied voltage, and solution 

properties.  The Taylor cone formed at the tip of the hypodermic needle and generated a 

majority of droplets less than 52 nm in diameter.  Particles were deposited slightly wet 

which enabled coalescing with previously deposited particles which have dried to form a 

contiguous thin film.  Electrostatic forces from deposited particles at thicker film areas 

repulsed smaller oncoming particles towards bare areas of the grounded substrate until a 

film covered the entire substrate.  A contiguous thin film was obtained after 40 minutes 

of ESD with a thickness of 64.7 nm and an RMS roughness of 20.2 nm.  UV-Vis 

measurements showed consistent absorption maximums indicating no alteration of 

PTEBS chemical structure from ESD.  Efforts are underway to incorporate PTEBS thin 

films in polymer solar cells. 

We conclude that ESD of water soluble polymer PTEBS thin films results in 

comparable efficiencies to traditional spin coating of thin films in TiO2 solar cells.  

Device constructions from ESD generate nearly double the Jsc but approximately half the 

Voc as spin coated films.  Devices from ESD have a larger standard deviation in current 

density due to greater variations in film morphology.  The increase in Jsc is attributed to a 

greater interfacial contact area between the PTEBS and TiO2 layers due to the superior 
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penetration of electrosprayed PTEBS droplets into the pores of the TiO2.  Surface tension 

of the water prevents adequate penetration of the TiO2’s pores during spin coating.  Poor 

film quality and surface roughness from interfacial boundaries between particles in the 

PTEBS layers from ESD are responsible for decreased Voc.  An exact analytic solution 

using the Lambert W function was used to model the experimental data from both 

devices construction types.  The model showed an increase by a factor of 2 in Jph in the 

ESD construction and an increase in J0 of two orders of magnitude in the ESD 

construction.  The model also agreed with dark J – V curves when Jph = 0 mA/cm2. 

We have fabricated polymer solar cells with fully water-soluble active layers by 

electrospray deposition.  The devices show modest photovoltaic response but show 

promise for the incorporation of water-soluble polymers and large-scale 

commercialization via electrospray deposition.  A single device structure of 

ITO/PEDOT:PSS/bulk(PTEBS+C60)/Al was used to study the effect of PTEBS to C60 

tris-acid ratio on photovoltaic performance.  An active layer ratio of PTEBS:C60 tris-acid 

(1:2) achieved the highest power conversion efficiency (0.0022%), fill factor (0.25), and 

open circuit voltage (0.56 V).  The percolation threshold of C60 was achieved between 1 

part PTEBS and 2 to 3 parts C60.  Increasing the C60 tris-acid ratio (1:3) improved short 

circuit current, but reduced the open circuit voltage enough to lower efficiency.  The 

incorporation of other water-soluble C60 derivatives is expected to enhance the efficiency 

and will be the subject of future study. 
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